3/8/14

The Heavy Flavor Tracker of STAR experiment

Jonathan Bouchet (KSU), for the STAR collaboration

Talk Outline

- The HFT (Heavy Flavor Tracker) detector in the STAR experiment at RHIC facility of BNL
- HFT detector:
 - physics goals
 - requirements
 - design and characteristics
- (anticipated) Physics performance
- Summary

New physics direction for STAR heavy ion program

Heavy Flavor:

- \blacksquare Mass_{b,c} > T_c, Λ _{qcd}, M_{u,d,s}
- Early produce
- Conserve in total number -
- Less influenced
- Good probe to QGP
- Thermal dilepton :
 - QGP signal
 - Probing the temperature of the medium

HFT detector motivation

Direct topological reconstruction of Charm

Detect charm decays with small $c\tau$, including $D^0 \rightarrow K \pi$

We track inward from the TPC with graded resolutions:

- PXL: two layers close to the beam pipe
 - New monolithic active pixel sensors (MAPS) technology
- SSD: existing single layer detector
 - double sided strips (electronics upgraded)
- IST: one layer of silicon strips along the beam direction, guiding the tracks from the SSD through PXL detector
 - proven silicon pad technology

subsystem	Radius [cm]	technology	Hit resolution : R/φ - Z [μm]	Thickness [% X ₀]
SSD	22	Double sided silicon strips	20 - 740	1
IST	14	Silicon strips pad sensors	170 - 1700	<1.5
PXL	2.7 ; 8	Active pixels CMOS	12 – 12	0.4 per layer

PXL Requirements & design choices

- $-1 \le \eta \le 1$, full ϕ coverage (TPC coverage)
- ≤ 50 µm DCA pointing resolution required for 750 MeV/c kaon.
 - Two or more layers with a separation of > 5 cm. Close to beam.
 - Pixel size of ≤ 30 µm
 - Radiation length as low as possible but should be ≤ 0.5% / layer (including support structure).

The goal is ~0.4% / layer

- Integration time of < 200 μs
- Sensor efficiency ≥ 99% with accidental rate ≤ 10⁻⁴.
- Survive radiation environment.
- Air cooling room temperature operation
- Thinned silicon sensors (50 µm thickness)
 - MAPS (Monolithic Active Pixel Sensor) pixel technology
 - power dissipation ~170 mW/cm² (integration time <200µs) [digital output]</p>
- Quick extraction/replacement (1 day) with 20 mm envelope [4 copies]

Intermediate Silicon Tracker (IST)

- 24 ladders 50 cm long
- At 14 cm
- Si pad detector .6*6 mm pads
- 24 APV hybrids per ladder for readout
- Liquid cooling
- < 1.5% radiation length

24 ladders, liquid cooling.

>99.5% live and functioning channels

- Existing detector
- 20 ladders at 22 cm
- Double sided Silicon with total ~400k strips
- New faster readout ~15% at 1 KHz limited by original detector hybrids

Expected track-pointing resolution

GEANT: Realistic detector geometry + Standard STAR tracking including the pixel pileup hits at RHIC-II luminosity

Integration of the HFT in STAR

Midwest Critical Mass 2014, Toledo

PXL being pushed in and after installation in the East end of STAR

- HFT can provide hermetic coverage of full charm sector
- Need for precision charm R_{CP} and R_{AA} analyses with fast turn-around times
- Detector capabilities better than LHC
- Strength in lower p_T

Charm yield, R_{cp} and R_{AA}

- Much better precision with HFT than current STAR measurements
- Low radiation length enable reconstruction of D⁰ with p_T starting from ~0, enabling charm total cross section measurement.

- Probe possible different medium property with different collision energy.
- Low radiation length enable reconstruction of D^0 with p_T starting from ~0, enabling charm total cross section measurement.

- $D^0 v_2$ is a more direct measurement of charm flow than non-photonic electron v_2 .
- With HFT STAR is able to measure $D^0 v_2$ at low p_T region, which is sensitive to charm flow

- $D^0 v_2$ is a more direct measurement of charm flow than non-photonic electron v_2 .
- Measurements at both LHC and RHIC will explore the change of media properties with energy.

- Overview of the STAR HFT upgrade
- The PXL detector will achieve a new standard in low radiation length vertex detectors
- The prototype run of the heart of HFT, the PIXEL system, was very valuable (next talk by M. Lomnitz)
- The final PXL detector along with the rest of the HFT upgrades have been installed for Run-14
- Together with the LHC data we expect to get new insights in the study of QGP